宇宙や生命について考えたことを書いてみる

宇宙や生命についてのエッセイです。事実に基づき書いているつもりですが、間違い、調査不足だったりすることもあるかと思います。また、筆者の妄想モードの場合は、予めそう書きますのでご了承ください。ゆるい感じで楽しんで頂ければ何よりです。

Ryuguへ小型ローバーが着陸、写真も届く!

先日、はやぶさ2から投下された小型ローバー(MINERVA-Ⅱ1)が無事にRyuguに着地した。
世界初の小惑星表面からの画像はこちら。

f:id:sohsan:20180924102113j:plain

   (引用元:JAXA
躍動感あふれる写真ですね。凄いの一言です。
なぜこのような写真となるかというと、この小型ローバーはジャンプ(ホッピング)しながらRyuguの上を移動するからである。バッタのようなイメージでしょうか。1回のホップで空中に飛び上がってから着地するまでに最大15分間ほど滞空し、水平方向に最大15mほど移動するとのことなので、バッタより滞空時間は長いですね。Ryuguの重力が小さいので滞空時間や移動距離も大きくなるのでしょう。
MINERVA-Ⅱ1紹介ページ(JAXA)↓

www.hayabusa2.jaxa.jp

f:id:sohsan:20180924102315j:plain

   (引用元:JAXA

また、はやぶさ2がMINERVA-Ⅱ1射出のため、Ryuguに近づいた時の画像がこちら。

f:id:sohsan:20180924102354j:plain

   (引用元:JAXA
はやぶさ2自身の影がしっかりと映ってますね(写真左)。わくわくしてくる写真です。

さて、小型ローバーだが、今回射出されたミネルバⅡ1だけでなく、もう2機ある。そのうちの1つはMASCOTというもので、こちらもこれから射出される予定だ。移動方式だが内部の振動重りを回転させることで本体そのものを回転させる。言葉で説明するのが難しく、動画があったので紹介しておきます。
MASCOT紹介動画↓

はやぶさ2ミッションとMASCOT小惑星着陸機 - YouTube

小型ローバーについてまとめてみるとこんな感じになる。
・名称/機数/分離日時/移動方法/電源
・MINERVA-II1/2機(Rover-1AおよびRover-1B)/2018年9月21日13時06分(JST)/モーター回転によるホッピング太陽電池
・MASCOT/1機/2018年10月2日~4日(予定)/重り付き回転アーム/バッテリー(リチウム電池

・MINERVA-Ⅱ2(詳細調査中)
移動方法だけでも様々な機構があるんですね。
MINERVA-Ⅱ1、MINERVA-Ⅱ2、MASCOT共に今後の活躍を祈ります。また今後、どんな写真を見せてくれるのか興味はつきないですね。

 

関連の過去記事↓

sohsan.hatenablog.com

 

 

はやぶさ2がリュウグウ到着

はやぶさ2が2018年6月27日、無事にリュウグウに到着した。一介の宇宙好きとして嬉しいニュースをありがとうございます。お祝い申し上げます。
面白かったのは、その形で、結構話題になっているようだ。コマ型、そろばんの玉、ピラミッドを二つ合わせた形、蛍石などなど、色々な物に例えられている。
実際の形はこちら。

f:id:sohsan:20180721213400j:plain

  写真.はやぶさ2が距離約20kmから撮影したリュウグウ
  (JAXA, 東京大, 高知大, 立教大, 名古屋大, 千葉工大, 明治大, 会津大, 産総研

なぜこんな形になったのだろうか。どうやらリュウグウ自身の自転によって赤道付近にレゴリスが集まったのではないかと言われている。
リュウグウの直径は約900m。そんな小さな小惑星を地球から見つけ、そこへ向かって飛んでいけるとは本当に驚きだ。また、表面には大小様々な大きさな岩が100個以上散らばっているらしい。

こんな面白いトピックスもあった。Queenのギタリスト、ブライアン・メイさんがリュウグウ立体視できる画像を作ったとのこと。
実は彼は天文学者でもあるらしく、ロンドンのインペリアル・カレッジで天体物理学の博士の学位も取得しているとのこと。コインでギターを弾く天才ギタリスト以外の顔も持っているとは脱帽です。

JAXAの紹介記事「ブライアン・メイさんによる小惑星リュウグウのステレオ視画像」↓

www.hayabusa2.jaxa.jp

Queenのギタリスト、ブライアン・メイさんtwitter

twitter.com

ブライアン・メイさん作成の立体視画像

 

はやぶさ2のミッションはこれからいよいよ本番だ。引き続き注目していきたい。

 

はやぶさ2の目的地小惑星Ryuguが見えてきた。早ければ来月にも到着!

はやぶさ2の現在
注目している事の一つであるはやぶさ2にこんなニュースがあった。

はやぶさ2のニュース(ITmedia)↓

「はやぶさ2」小惑星撮影に成功 エンジン好調で2カ月後にも到着へ (1/3) - ITmedia NEWS


はやぶさ2のニュース(JAXAプレスリリース)↓

www.jaxa.jp

はやぶさ2は順調に航行しているようで、目的地である小惑星Ryugu(りゅうぐう)の直接撮影に成功した。おめでとう!「はや2」。
現在は、地球軌道からRyuguの軌道に移るtransferフェーズということだ。

 

はやぶさ2の目的は?
直接的な目的としては、先の「はやぶさ」と同じで小惑星の一部を持って帰ってくることだ。なぜ持ち帰るのか。簡単に言うと、持ち帰ったサンプルを調べることで太陽系ひいては宇宙の生い立ちや生命の起源につながる研究に役立てようというものだ。

 

■もしも何らかの発見があったとしたら
仮にRyuguに生命の痕跡が見つかったとしよう。例えば、何らかの有機物やアミノ酸の痕跡があったとする。すると、これは何を示しているのだろうか。
Ryuguは太陽系の中の小惑星の一つである。太陽系の中の小惑星と惑星の一つである地球に生命(もしくは生命の痕跡)があるということになる。つまり、太陽系の中ではあまねくどこでも生命が発現する可能性があるということになる。生命の種は太陽系の至る所にあり、たまたま地球が生命が生まれ進化するのに最も最適な環境であったというように考えられないだろうか。

ここで少しスケールを大きくして銀河系全体として考えてみる。
銀河系の中に太陽系はある。銀河系の中の恒星の数は2000億個と言われている。つまり、恒星系が2000億個あるということになる。
太陽系で起こったことは他の恒星系でも起こり得るのだろうか。または、太陽系だけが特別なのだろうか。
太陽系のみが特別でないとするならば、他の恒星系にも生命を宿す可能性は十分にあるということにならないだろうか..

f:id:sohsan:20180506102757j:plain

     イメージ.銀河系(引用元:NASAJPL-Caltech/ESO/R. Hurt)
     太陽系は真ん中下辺りのSUNと書いてあるところ

はやぶさ2のRyugu到着予定日
順調にいけば、早ければもう来月(2018年6月末)にはRyuguに到着するとのこと。その後、1年半ほどRyuguに滞在し、2019年末にRyuguを出発、再び地球への帰還の旅に出る。そして2020年末には地球に帰還予定。竜宮城まで浦島太郎を乗せていった亀のようにはやぶさ2も無事に帰ってくることを楽しみに待っていたい。その時、持って帰ってきた玉手箱には煙だけでなく、本当のお宝が入っていてほしいと祈っている。

 


過去にはやぶさ2について書いたブログはこちら↓

はやぶさ2やあかつきのおめでたい話 - 宇宙や生命について考えたことを書いてみる

「あけぼの」運用終了とか「はやぶさ2」の1回目の軌道修正完了とか - 宇宙や生命について考えたことを書いてみる

はやぶさ2打ち上げ成功! - 宇宙や生命について考えたことを書いてみる

はやぶさ2(その1) - 宇宙や生命について考えたことを書いてみる

 

はやぶさ2の状況がリアルタイムでわかる「はや2NOW(Haya2NOW)」のサイト↓ 現在の運用の様子が見られるらしい。

Haya2NOW
サイトの見方の説明↓

「はや2NOW」公開| トピックス | JAXA はやぶさ2プロジェクト

 

はやツー君twitter

twitter.com
はやぶさ2情報(JAXAtwitter

twitter.com

 

生物の定義について考えてみた

■「生物」とは何か。
「生物」とは何かを考えてみた。ちなみに「生命」ではない。「生物」と「生命」の違いについては今回のポイントではないのでまたの機会にでも。今回は「生物」の定義についてである。
生物の定義について昔教わったかもしれないが、すっかり忘れているのと、ひと昔前なのでその間に新たな発見があり定義も変わっているかもしれないので、色々調べてみた。すると、現在では以下の4つを定義として上げているところが多いようである。

1.外部との明確な境界があること・・・(細胞)
2.外部から物質を取り入れ内部で化学反応を行うこと・・・(代謝
3.自己複製すること・・・(遺伝子、遺伝情報)
4.自身の内部の環境を維持すること・・・(恒常性、自己修復)

各条件の後ろに()書きで付けたのは、その条件を表すキーワードである。
この4つ以外の条件を上げるとするならば、生長(成長)することや、外部環境の変化に合わせて進化していくこともあると思う。ここでいう進化は、個々の個体が進化するという意味ではなく、何世代も子孫を作るうちに起こる変化のことである。
なので、5番目の条件として、

5.生長・成長や進化すること

を敢えて上げてみたい。

何年か前に、ドラえもんが生物であるか否かの論争があったらしい。きっかけは2013年2月に実施されたとある中学入試の問題だった。

「『ドラえもん』が生物として認められることはできないことを理由をあげて説明せよ。」

という趣旨の問題が出題されたのに端を発し、ネット上でも様々な議論が展開された。
これもよくよく問題の背景を調べてみると、その問題はその前段で生物の定義がいくつか上げられていて、それを引用して生物でないことを説明すればよい問題であったようだ。
この問題の解答だが、「ドラえもんは成長しないし、また子を作らないため生物ではない。」という趣旨を記載すれば正解だったようだ。


■どの条件が最も生物の核心をついているか
さて、5つの条件のうち、どれが最も生物を生物たらしめる条件なのか。
改めて5つ並べてみる。

1.外部との明確な境界があること・・・(細胞)
2.外部から物質を取り入れ内部で化学反応を行うこと・・・(代謝
3.自己複製すること・・・(遺伝子、遺伝情報)
4.自身の内部の環境を維持すること・・・(恒常性、自己修復)
5.生長・成長や進化すること・・・(成長、進化)

僕が思うに3番の「遺伝情報を持っていて自己複製すること」が最も核心をついているのではないかと考えている。
1番の条件は、生物の条件というよりある一つの物体であるための条件であるし、2、4、5番の条件は、仮にその条件を満たさなかったとしても生物であることはあり得る。細かく書くと長くなりそうなので割愛する。

3番の条件をさらに突き詰めると「遺伝情報を持っていること」が核心ではないかと思う。
生物の条件を端的に一言でいうならば、

・遺伝情報を持っていること

だと言える。シンプルで分かりやすくないだろうか。

ところで、地球上の生物の場合、この遺伝情報をどこに持っているかというと、遺伝子すなわちDNA(注1)である。よくよく考えてみると遺伝情報を保持するためにDNAは必須なのだろうか。DNA以外の状態で遺伝情報を持つことはできないのだろうか。
ちなみに、ヒトのDNAの情報量はどれくらいだろうか。ヒトのDNAに使われる塩基は4種類あり、全部で30億塩基対と言われている。これを2進数で計算すると、750Mbyteとなる。CD-ROM1枚に入る情報量である。
地球上の生物は全てDNAを持っている。もし、DNA以外の形で遺伝情報をもつものがいたとするならば、それは生物なのかそうでないのか。もしかすると、広い宇宙の中には、DNA以外何らかの状態で遺伝情報を持ったものがいるかもしれないと考えると怖いような楽しいような気がする。

 

(注1)厳密に言うと、遺伝子とDNAは別物である。DNAの中の一部に遺伝子がある。
以下に言葉の定義を整理したものを記載する。
[言葉の定義]
染色体:DNAが巻き付いた棒状の固まり。細胞の中にある。
DNA:デオキシリボ核酸という物質。Deoxyribo nucleic acidの略。二重らせん構造をとる。
遺伝子:DNAの中で、遺伝情報をもっている部分。
遺伝情報:生物をつくるための設計図のような情報そのもののこと。
ゲノム:遺伝情報の全体。遺伝子が持っている情報に着目した言葉。

 

地球外文明の数について考えてみる(続)

 改めて地球外文明数について少し考えてみた。
過去にドレイクの方程式について書いたブログはこちら

以下は上記ブログからの抜粋になる。

ドレイクの方程式は、単純な掛け算で表される。少しパラメータの数が多いだけだ。
様々なパラメータを掛け合わせることで、最終的に、銀河系に存在する通信可能な地球外文明の数(N)が求められる。

 

f:id:sohsan:20180318173821p:plain
  ドレイクの方程式

N  :我々の銀河系に存在する通信可能な地球外文明の数
R* :我々の銀河系で恒星が形成される速さ(銀河系内で年間当たりに発生する星の数)
fp :惑星系を有する恒星の割合
ne :ひとつの恒星系で生命の存在が可能となる範囲にある惑星の平均数
fl :上記の惑星で生命が実際に発生する割合
fi :発生した生命が知的生命体にまで進化する割合
fc :その知的生命体が星間通信を行う割合
L  :星間通信を行うような文明の推定存続期間

この式を提案したドレイク博士自身は、どういう値を入れているのか気になっていたところ、コズミックフロントネクスト(NHK BS、H28年4月7日放送)の中で、ドレイク博士自らが計算していた。
http://www.nhk.or.jp/cosmic/broadcast/160407.html

博士が入れていた値は以下のようなものだった。

R* :20
fp :0.5
ne :2
fl :1
fi :1
fc :1
L  :1000

これらの値を入れると、銀河系内の地球外文明の数(N)20,000が出てくる。

 

 

 ここで改めて各パラメータの値を具体的に見てみる。
すると、
fi :1
というのが気になってくる。ここが1になるということはすなわち、ある惑星に生命が発生したら必ず知的生命体にまで進化することになる。地球においてはそうかもしれないが、果たして他の惑星においても当てはまるのだろうか。アメーバのような原始生命体が発生したとしても、あまりに過酷な環境であればその生命体は知的生命体にまで進化できるだろうか。近くの恒星からの熱、放射線やもしくは惑星そのものが持っている資源の枯渇、また隕石の衝突など様々な阻害要因が考えられる。

 また、
L  :1000
についてはどうだろうか。この値は、星間通信を行うような文明の推定存続期間が1000年であることを示している。星間通信を行うような文明になったとしても平均1000年程度で滅んでしまうとドレイク博士は考えているのかもしれない。
星間通信を行えるだけの技術力を持っていながら、実際には行わないということもあるだろう。自らの意志で星間通信を行わない生命体もいるかもしれない。生前のホーキング博士も言っていた。むやみに宇宙へ向かって発信すべきでないと。相手が何を考え、どういう行動を取るか分からないにも関わらずこちらから情報を発信するのは危険であると博士は考えていたようだ。ネット上で誰が見ているのか分からないのに自分の居場所を知らせるのは危険だ。それと同様かもしれない。そんな理由で星間通信を行わない文明もあるかもしれない。

上記2点を鑑みてfiとLのパラメータ値を以下のように変えて計算してみる。
fi :0.01
L  :10000

 これらの値を入れて、銀河系内の地球外文明の数(N)を計算してみると2,000となった。ドレイク博士自身の計算より1桁小さくなった。
この値を大きいと見るか、小さいと見るか。1桁小さくなったといっても2,000である。地球以外にも文明があるのではないだろうか。
ホーキング博士の研究により宇宙や地球外知的生命体の謎の解明が大きく進んだことは間違いない。今後も第2、第3のホーキングが生まれ、宇宙の解明が進んでいくだろう。

(追記)
2018年3月14日、スティーブン・ホーキング博士が亡くなりました。ここに謹んで哀悼の意を表します。

 

将棋電王トーナメント開催前に考えてみたこと

第5回将棋電王トーナメント(2017年11月11-12日開催予定)が始まる前に、改めて今年開催された第27回世界コンピュータ将棋選手権(2017年5月3-5日)を見てみた。
優勝ソフトがどうなったかの結果については既に知っていたので、優勝が決まった事実上の決勝戦(Ponanza Chainer(※1) VS elmo(※2))を見てみたかったからだ。

 

AI同士の将棋は究極の棋譜に近づいているのは間違いないと確信した。駒がぶつかっての中盤以降、解説のプロ棋士の方も驚くような手を両者とも繰り出していた。例えば、角を一番隅に打つ(効きが少なくなるので普通はあえて打たない)、駒損を覚悟で角を切る、駒得になるのに放置して攻め込むなどなど。詳しくは強い方の解説にお任せだが、見ていて「え!」となることが非常に多かった。
AI同士の戦いなのに、そこに人間同士が戦っているかのような錯覚を覚えた。そこに心動かされるものがあったのは間違いない。よく考えてみると、ある事象に関して心動かされるか否かは受けて側の解釈でしかない訳である。ここを突き詰めていくと、生命とは何かのヒントになるかもしれない。ただ、この話を広げていくと最終的に人間原理の話に行き着いてしまいそうなので、今回はこれ以上は触れない。

 

さて、将棋について指し手が全て計算しつくされたとしたら、先手後手どちらが勝つかが解明されたことになる。しかし、これには天文学的な計算量が必要なため解析されていないのが現状だ。
ただ、想像することはできる。
将棋の最善手を突き詰めていくと、最終的には引き分け(千日手または持将棋)になるような気がする。引き分けには2パターンある。千日手持将棋である。千日手とは同じ局面が4回現れた時点で成立する。もう一つの持将棋というのは先後両方が入玉して(相入玉)、これ以上やってもどちらも詰まない状態になるものである。この時、将棋のルールでは、それぞれの駒を点数化(大駒5点、玉を除くそれ以外の駒1点)してどちらも24点以上あれば引き分けというルールが適用される。(参考までに、初期配置の状態で計算をすると、それぞれ27点づつ持っていることになる。)
AI同士が最善手を指し続けるとするならば、このどちらかのパターンに収束していき、結果引き分けになるのではないだろうか。

 

これはあくまでも現時点の条件(例えばマシンパワーの上限や将棋AIの作り(探索、学習、評価の仕組み)など)の場合の推察であり、コンピュータのアーキテクチャが変わって、今の計算量と比較にならないくらいの計算量が実現できたなら話は変わってくる。
その時は、10の226乗(※3)と言われる全パターンが計算しつくされること(完全解析という)になるので、結論が出ているはずである。ちなみに、計算量の少ない順に、オセロ(6×6盤)→オセロ(通常の8×8盤)→チェス→将棋→囲碁(通常の19路盤)である。
計算量が増えていくに従って、計算時間も比例して長くなっていく。少しオセロの場合で計算してみる。
オセロ(6×6盤)の完全解析にかかった時間が5日半なので、オセロ(8×8盤)ではその10の12乗が必要になるとの見積もりがある(※4)。これを計算すると、5,500,000,000,000日(約151億年)となる。なんと宇宙が出来てからの時間(現在138億年と言われている)を超えてしまった。それより更に計算量の多いチェス、将棋、囲碁は言わずもがなである。


つまり、今のコンピュータのアーキテクチャで計算するのは無理なのがよく分かる。まだ見ぬ新しい方法で完全解析される時がくるのだろうか。SFに出てきそうな0手で先手投了(もしくは先手1手指したところで後手投了)という時代はくるのだろうか。

 

(※1)
「Ponanza Chainer」の公式紹介文はこちら↓「Chainer」というDeep Learningを使用しているとのこと。

http://www2.computer-shogi.org/wcsc27/appeal/Ponanza_Chainer/Ponanza_Chainer.pdf

(※2)
「elmo」の公式紹介文はこちら↓

http://www2.computer-shogi.org/wcsc27/appeal/elmo/elmo_wcsc27_appeal_r2_0.txt

ちなみに参加ソフト一覧のページはこちら↓

第27回世界コンピュータ将棋選手権

(※3)
完全解析に必要な計算量(ゲーム木の複雑性)は、オセロ(6×6盤)で10の30乗、オセロ(通常の8×8盤)で10の58乗、チェスで10の123乗、将棋で10の226乗、囲碁で10の400乗と見積もられている。参考までに、盤面状態の種類は、オセロ(通常の8×8盤)で10の28乗、チェスで10の50乗、将棋で10の71乗、囲碁で10の160乗と見積もられている。

(※4)
縮小版オセロにおける完全解析(情報処理学会研究報告より)↓

https://www.ipsj-kyushu.jp/page/ronbun/hinokuni/1004/1A/1A-2.pdf

 

地球の生命の始まりについて考えてみる~宇宙・生命定番の疑問シリーズ~

f:id:sohsan:20170820215946p:plain

宇宙や生命の定番の疑問の一つに次のものがある。
「地球上の生命はどうやって生まれたのか。」

数年前こんなニュースがあった。
2013年11月、何も無かった海面に海底火山の噴火により突如新しい島ができたというものでる。小笠原諸島で噴火が起こり溶岩流が噴出してそれが固まり島となったものが西之島新島である。
この島に生命はいるのか。
噴火でできた無人島には生命はいない。しかし、これは島ができて始めの頃の話である。生命のいなかった島にも時と共に草や木、動物や昆虫もいるようになる。これらの生命はどこからきたのか。実は島の周りから生命がやってくるのである。海流によって流れてきた流木や流木の中に産み付けられた昆虫の卵、風によって飛ばされてきた草木の種。鳥は自らの羽で飛んでくる。小笠原諸島に元々ある父島などの島々の生命もそうやって周りから流れ込んだ。

さてここで当初の疑問に戻る。
「地球上の生命はどうやって生まれたのか。」

小笠原諸島の話を宇宙規模に拡大して考えてみる。すると、地球の周りから生命(もしくは生命の種)がやってきたと考えられないだろうか。それがパンスペルミア説である。
地球の原始の海の中でアミノ酸ができたかもしれない。ただそれだけでは、アミノ酸をより高度な有機体へ進化させるのはかなり困難な気がする。地球上の生命は多種多様な種の広がりと急激な進化をしてきた。原始のアミノ酸に地球外からなんらかの形でやってきたDNAがアミノ酸と結びつき始めて生命になったのではないだろうか。
そのDNAは元々どこにあり、またどこからやってきたのか。

そんなことを考えながら夏の夜空を見上げるのもまた楽しいものである。